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A: Math. Gen.. Vol. 9, NO. 3. 1976. Printed in Great Britain. @ 1976 LBF 

& t e a  tensor products of induced representations ss” 
K C Hannabuss 
Mathematical Institute, 24-29 St Giles’, Oxford OX1 3LB, UK 

Received 23 July 1V5, in final form 6 November 1975 

Abstract, A solution to the general problem of decomposing any tensor power of an 
induced representation symmetrized in accordance with a given representation of the 
appropriate symmetric group was given in 1973 by Gard. In this paper a shorter and more 
general proof of the same results is provided. The method used has other applications 
(albeit not very exciting ones) in quite different areas of representation theory. 

L Nofation and prerequisites 

Our notation will generally follow that of Mackey (1949,1968), but for the reader who 
may be familiar with a more explicit version of the inducing construction, we summarize 
itssalient features. 

Suppose that the closed subgroup K of a separable locally compact group G has a 
voitary representation D in a Hilbert space $(D). This can be induced up to a unitary 
representation U of G, which acts on functions $ from G to $(D) satisfying 

44%) = D(k)$(g) for k in K and g in G, 
andalso 

J IM~)II* < 00 
K\G 

where the integration is with respect to the unique quasi-invariant measure class on the 
mtspace K\G. The induced representation can now be defined by 
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326 K C Hannabuss 

Writing D"(k) for D(aka-') we obtain 

' ~lr,(kh) =D"(k)$a((h) 

and this is all that survives of the K-equivariance condition on functions of this% In 
this way the induced representation can be decomposed into a direct integral ove<i in 
K\G/Hof the representations OR the functions I)", and the form of these is &atm,j,ka 
representation of H induced from the representation D" of the subgroup Hn K". 
is the content of Mackey's subgroup theorem (1951, 1968). (There is a 
condition that K and H be 'regularly related', but once this is satisfied the 
tion works for projective representations as well as ordinary ones.) 

2. Representations of groups with automorphisms 

Our derivation of the decomposition formula for a symmetrized tensor produd b~ 
up into three parts. The first of these is to apply the Mackey decomposition of the 
preceding section to a particular semi-direct product group which we now introduce. 

To avoid repetition we shall assume henceforth that all the groups mention4 are 
separable and locally compact. Suppose that G is such a group acted on by a group d 
automorphisms U. Suppose further that K is a closed subgroup of G which is i n w t  
under the action of Il, and that His another closed subgroup, each of whose eiemenkk 
k e d  by all the automorphisms of II. 

(This is motivated by the following example. Take G to be the direct produdof II 
copies of a group %, K the direct product of n copies of X (X a closed subgroupof Y),H 
the diagonal subgroup {(g, g, . . . , g) E G: g E ';e>, and II the group S, where the permu- 
tation T acts by taking (gl,. . . , g,) in G to [(gl, . . . , g , ) ] ~ = ( g ~ ( ~ ) , . .  .,&I(")). 'Ibe 
n-fold tensor product of a representation V of 9 can be regarded as the restriction to 
the diagonal subgroup of the outer product representation, (gl,. . . . g.1~ 
V(gl)O. . . OV(g,) of G. If Vis induced from X then the outer product representath 
is induced from K. Symmetrization of the tensor product can now be effected by 
looking at the action of II. We would like to thank the referee for bringing to cur 
attention the paper of Kerber (1973) in which such wreath products are also used.) 

Returning to the general situation, we write [ g ] ~  for the result of acting on thegroV 
element g in G with the automorphism T. We can then form the semi-direct produd 
nOG, whose multiplication law is 

(Tlg1)(~2g2) = ( T T T I T ~ ) ( [ ~ ~ ] T ~ ~ ~ )  for .rri in n, g, in G, i = l I 2 .  

Within this semi-direct product [g]; = T-'gT, 
The semi-direct product of K with n can similarly be formed. In the caSe OfH 

trivial action of Il on this subgroup gives simply the direct product ll X H. 
k t  us now suppose that D is a representation of K which is taken into an quident 

representation under the action of II. (That is, if we define D"(k) = D([k177-')9 
D" is equivalent to D for each T in n.) According to the theory of representationsd 
group extensions developed by Mackey (1958), we can extend D to a Projm 
representation A of II@K, which when restricted to K gives D. From A a represenw 
tion of n@G may be induced and then restricted down to Il x H. (If We wish to.wd 
with projective representations of G we may do so, provided that the multiplier lrfoto 
IIOG.) 
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Ihesubgroup theorem of Mackey now tells us how to reduce this to a direct 
over the double coset space n@K\n@G/n X H of representations induced 

X H) n (n@K)" = La, say, where a is a double coset 
mtive. Now the space of double cosets can be identified with the space K\G/H represe & out by the natural action of n: (KgH).rr = K([g].rr)H. ("his is well-defined by 

*ofhe invariance of K and H under n.) In the special case of the tensor products 
which effects the symmetrization. It collects many K : H 

Me cosets together into a single point of (n@K) \ (n@G)/(II X H). One way to see 
m~ identification comes about is to notice that K\G can be identified naturally 
&fl@~\n@G on which there is still the action of n x H to be taken into account. 

oneuseful observation which comes out of this identification is that the double coset 
representative a can always be chosen to lie in G and not just in n@G. 

&oups of the form 

further action of 

3. m general theorem 

Botgnations of 0 2 lead us to investigate the representation of n X Hinduced from 
kreprwntation A" of La. First we shall introduce some of the subgroups which play 
a part in the theory. 

Wemay define nu = n n La, and Ha = H n  La. These are the stabilizers in ll and H 
respectively of the coset La in La\ n X H. We also need 

~ ( u ) = { T E ~ :  ( . r r h ) ~ L ~ f o r s o m e  h inH}  

H(a)  = {h E H: (mh) E La for some T in TI). 
ad 

Clearly nu and Ha are subgroups of II(a) and H(a)  respectively, but we can, in fact, 
saymorethan this. The projection from La to II(a) defined by (.rr, h)*.rr is clearly a 
homomorphism, and its kernel is Ha, so that Ha\ La is isomorphic to Wa). Similarly 
&\tll is isomorphic to H(a).  On factoring out further we deduce that 

nu\ n(a)  =nu x Ha\ La = Ha\ H(a).  
Wecaneasily write down the correspondences explicitly, for if .rr is in n(a) and h ( r )  in 
H(a) is chosen so that .rrh(.rr) is in La, then 

neehent  h ( r )  may clearly be chosen to depend only on the coset in which .rr lies. 
Because the maps are onto the respective quotient groups we deduce that the most 
memlel€"t of H(a)  must have the form kh(.rr) for some k in Ha and some .rr in 
b). similarly the most general element of La has the form ~ k h ( . r r ) .  

'Ihe induced representation in which we are interested takes place on functions 4 
hmnxHto $(D) which satisfy 

nUr+lla x H,(ah(.rr))+H,h(.rr). 

Ilr(lg)=Aa(l)+(g) for 1 in La, g in ~ x H .  
we.now want to pick out of this representation a subrepresentation which trans- 

I05~eagivenrepresentation w of II. w e n  n is compact, as it is in our motivating 
the Projection which picks out the relevant subspace can be given explicitly as 

Q a U w d . r r  
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where xw is the character of W, and d.rr is the normalized Haar measure on n. weSM 
therefore assume that we can find the subspace of functions on which U am in a way 
equivalent to W. To be explicit, let S be the unitary operator which provides 
equivalence, so that for $ in the subspace 

U,* = s-' W&. 

There is, of course, a consistency condition to be satisfied in order that this 
possible. This is that if .rr is in nu and g is in H then 

(s-l W.S$)(g) = (U.$)(g) = $ ( g d  = $(%) = A"(.rr)$(g). 
This can be regarded as saying that W and A" each restricted to II, are not disjoint 

know the values of the function on elements of H the rest can be deduced using 
All but the last of the above chain of equalities is true for any .rr in II, so that onewe 

JI(.rrg) = (s-' WSI))(g) .  
We can now look to see what remains of the equivariance condition on fundom. 

Any element of L" can be written in the form l(.rr) = .rrkh(.rr) for some 7~ in n(a)  mdk 
in H,. Then 

$(l(.rr)g) = Aa(i(.rr))$(g). 
Since .rr commutes with elements of H the left-hand side can also be written 
$(kh(.rr)g.rr) = (S-'W,S$)(kh(.rr)g), SO that 

6 - l  W3$)(kh(.rr)s) = A W . r r M g ) .  

$(kh(.rr)g) = A'(w)(s-l W , ' S $ ) ( g ) .  

On replacing S-' W , & ! I  by +: 

This is entirely equivalent to our original equivariance condition on functions in the 
subspace. It can also be written in another form. Any l ( ~ )  can be expressed as Irh for 
some h in If(&), and .rr in II(a). Moreover, for any h in H ( a )  there is a ~ ( h )  such that 
.rr(h)h is in La. Thus we may write equivalently the condition that 

JI(hg) = A"(.rr(h)h)(S-' W$&S$)(g) 
for g in H and h in H(a).  

involves the action W of rI(cr). However, if W is one-dimensional, then the 
simplifies considerably to 

In general this is not a tembly easy condition to use because of the way in which it 

44%) = W(dh) ) - '  A"(.rr(h)h)$(g) 
which is just the condition for the representation to be induced from the representation 
h~ W(r(h))- '  A"(.rr(h)h) of H(a).  

The consistency condition is just that 

A"(.rr)JI(g) = W(.rr)$(g) 
for all .rr E II,, g in H and I) in the subspace. That is, A" restricted to nu contaios * 

. d  restricted character W. 
Sometimes it is possible to simplify this requirement by making a Careful cho'ce 

In that case A" and A agree when restricted to nu, and the consistency requirements 
the double coset representative a, so that a is simply invariant under the action of Ik . 
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btAr&cted to n is not disjoint from the restriction of W. In particular, if this is ' me at the double coset KH where we can take the representative a ='l, it is Pb aces~ary hat A contains w. 
results of this section can be summarized in the following theorem. 

Mgbthe unitary representation of G induced from the representation D of K.  That 
be representation space which transforms under the representation W of II is 

iDpariant under the restriction Of U to H, and, as a representation space for H, it can be 
sadirect integral over those a in (K\G/H)/II for which Aa and W restricted to 

n, are not disjoint, of representations on functions (6h:H*t)(D) which satisfy 

g in Hand h in H(a).  
Equivalently the satisfy 

dfa(kh(.rr)g) = A"(?rkh(?r))(S-' WilS&&) 

hall k in Ha, g in e, and at least one .rr in each coset of n,\ II(a). 
If W is one-dimensional, then the contribution of a to the direct integral is the 

representation of H induced from the representation h* W(?r(h))-'A"(?r(h)h) of 
m. 

A Symmetrizes tensor powers 

Thehalstepis to apply this result to the example mentioned in 0 2. We therefore take 

G=%x . . . x % ( n  copies) 

K = X x  . . . x X ( n  copies) 

H={(g, ...,g) EG:gE%} 

(for brevity we shall write instead of (8, . . . , g ) ) ,  and 

l-I=Sn 

a g  as permutations of the components. 
we may pick double coset representatives a = (a1, . . . , a,) in such a way that 

@ i = k  a2 represents a double coset in a % / X ,  a3 represents a double coset in 
Q W n P ,  and so on till a, represents a double coset in W % / X n X a 2 n  . . . n 
'*-'a As far as possible we duplicate representatives, that is, for j 5 i, we use a, to 
"present the SC: X n X a z n  . . . n r l  double coset in which it lies. One way of 
*e% this is to write ai in the form of a product a f a ? .  . . ai, where at is the 
qresentatiVe of the double coset XaiX chosen from some standard set, a:a? is a 
$aqdardrePresentative for the double coset X a i ( X n  Xu*), likewise, and so on. Now, 
'Wbchded a representative a we need not include any representative for its 

n[a]rr6 = .rr((~,,(~)h, . . . , a,,(,$), and ?r6 lies in La provided that this 
"Cn0K)a. Thisfor,ces a,(j$ to lie in Xa, for each j = 1, . . . , n, so h has to lie in 

K[a]?rH. That is, we pick one representative in each orbit of n. 
Now 
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and T has to be such that this is not empty. From this we deduce that 
n u = { ~ ~ I I : a , ( j ) ~ X a j , j = l  ,... , n }  

The expression for I I ,  can certainly be simplified, for if a,(j) is in Xaj then ~l . ,  and 
are equal, and by our convention this can only happen if a j=a  4 1 )  . S' we 

choose the same representatives wherever possible. Accordingly we deduce &at 

nu ={T€n: aj = Cu,(i), j = 1, . . . , n}. 
The elements of ll, just serve to permute the equal components of a. Letus 

suppose that the distinct components of a are PI, . . . , fin and that Pi occurs in nj places, 
(n l  + . . . + n, = n) .  Then nu is isomorphic to Sn, X Sn, X . . . X Snt. 

The same convention also helps us to simplify the form of II(a). Suppose that 
aj = cyk. We know that, for T in n(a) ,  a ; : j )~a j  and (Y&%xk have an element in 
common, and so XCZ,,~) and X Q , ( ~ )  have a non-empty intersection. They must therefore 
coincide, and, by our convention, this forces a,(j) = a+). Thus an element of II(a)can 
only move equal components of a to equal components. If we write n(BJ for the 
component into which T permutes pi then T is in n ( a )  provided that n~d3f1sl.@j)iS 
not empty. 

As far as the representation theory is concerned we shall take for D a representation 
of the form A@. . .@A, where A is a representation of X. This extends to n@K 
when we put 

A ( d k 1 9  * * ., kn))vlO. . . Ovn =A(kw-1(1))vT-1(I)O. . . OA(km-1(n))uz-1(n)- 

If we introduce the notation E, for the operator on Ij(A)O . . . OIj(A) which permutes 
the factors as T, then we may write this as 

A ( d k 1 7  * * * 7 kn))=A(kw-l(l)). . . A(k,-1(n))& 
If TK is in La then A"(&) can easily be found to be 

A ( d a w ( ~ ) & Y ' ,  . . 7 a,(n)ha,'))=(A(alha,'l(l))O. . . OA(anhcu,L1(n)))Er 

We can now deduce the consistency requirement by putting h = 1, and t a h g  71 in &- 
Then a " ( ~ )  =E, and we require that E restricted to nu should not be disjoint from A! 
This condition is discussed in the final section of Gard (1973) and we have nothing' 

the symmetrized and antisymmetrized tensor products for which W is one-&ensiooaf. 
In that case the consistency condition is that E restricted to contains the s p e w  
or alternating representation as appropriate, and this always happens. ' 
MA)@. . . @$(A) which satisfy 

add to what is said there. For simplicity we shall from now on consider only t h e y  oi 

The induced representation is now defined on functions from 

JlCKd = A Q ( M h ) )  w(T(h))-lJl(g) 
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c(7i=la~:j,Xaj), g in $3, and T = r ( h )  a permutation such that (Y,:~$Y~ fa in C l , € U  

*we have written r for ~ ( h ) .  An equivalent form is that 
- 

+o(mk(r)g)= W(r)A(a ,kk(~)ey , ' l~~, )O.  . . OA(ankk(?r)a,'l,n))E,$Q(g) 

fcrrgh Q k in X n F n  . . . n9P and k ( r )  is an element in n ~ = l a ~ : j ) X a p  (G) is 

example, we consider in detail the case of the symmetrized or antisymmet- 
asquare of a finite group representation where our results can be compared directly 
i&those of Mackey (1953). For this we take n = 2. Since aI = 1 we need only specify 
02=p which is a double coset representative for sc\%/X. The transposition 7 in Sz 
ta~es (1, /3) to (p, 1) = (1, p-l)(p, p) ,  so that we need only represent one of XpX and 
@-'X, unless, of course, they coincide. If they are the same then, in Mackey's 
terminology we say that XpX is self-inverse. 
Now by our earlier discussion the elements of II(a) are just those permutations 

dich take a double coset into another having a represenative with the same blocks of 
equalcomponents though possibly permuted amongst themselves. Since T takes SGpSt 
b@-'X, T is in n(a) just when XpX is self-inverse (so that Xp-lX also has 
npresentative p).  

z x , k  not self-inverse, therefore, n(i) = { l}, and we have (writing $@ instead of 
# ( ~ d  jut the condition 

element h ( r )  introduced earlier). 

$p ( k g )  = A @)@A (PkP - '1 cG.s (8) 

forall gin  4$ and all k in X n  p-'Xp. 

bave 
Ifxmis self-inverse then II(a) = Sz and in addition to the above condition we also 

$6 ( k k ( r ) g )  = * A  (kk(r)p-')OA (pkk  ( ~ ) ) E d p  ( g )  

where the sign is chosen according to whether we wish to symmetrize or antisymmetrize 
the representation. 

me  of B = 1 is somewhat special as then n, = Sz also, and by virtue of the 
'T?nCY "%tion which requires t,bl to be appropriately symmetrized the second 
mQhonredums to the first, each giving 

$i(kg) = A (k)@A (k)t,bl ( g )  
fork in .y, 

the symmetric or antisymmetric square decomposes into a direct sum of three 
$Onebeing for P = 1, one a sum over self-inverse double cosets, and one a sum Over 

whchare not self-inverse (picking just one out of XpXand X/3-'3?). Apart from ""Ct that we have not identified the tensor product with an operator algebra this 1s 
pleas el^ Mackey's conclusion. 
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We can in general summarize the effect of symmetrization as follow. F~~ 
al. enables us to reduce the number of double cosets needed in the Mackeyde"positi 

Second it enables us to induce from U,En(fIy=1Q&xaj) instead of from its subgroup 
X n r z n  . . . n Sc".-', which is what we should use in order to obtain an unSymmet- 

nt than h d  product. For continuous groups the latter effect tends to be less impom 
the former, inasmuch as the sort of coincidences Of components of a which la to 
larger subgroups generally arise in sets of measure zero in the decomposition. 

To conclude this section we remark that if the representation A is one-dimensio~ 
then E, is the identity operator and the equivariance condition reduces to 

n 

5. The application to semi-direct products 

If 3 has the form of a semi-direct product of an abelian normal subgroup Nwithagroap 
of its automorphisms M, then the general theory can be taken a little further. ('Ihkm 
includes, of course, the examples of the PoincarC group, the Euclidean groups, 
symmorphic space groups.) The simplifications which occur in this case have a l s o k n  
investigated by Backhouse and Gard (1974). 

We shall suppose than an irreducible representation of Ce = N O M  has been formed 
following Mackey's procedure (1949, 1968), by taking a character v of N and a 
representation B of the little group M,,, and inducing A = vB. Our group Xis therefore 
N O M ,  

Since "3 = N@M,,\N@M = M,\M, all double coset representatives may be 
chosen to lie in M. Then .?Pi = NOM?, and a1 = 1, a2 represents a double coset in 
M,,\M/M;a, a double coset in M,,\M/M,, n e  and so on. 

The subgroup from which we induce the appropriately symmetrized tensor produd 
is then 

The equivariance condition says that 

for x, y in N, 6 in M: and 7 in M. Using this our functions can be replaced bY fundom 
defined only on M. As in the previous section this collapses down dramatidy if * 
inducing representation is one-dimensional. Then 

n n 

'Od This formula applies in the case of irreducible representations of the threedimem 
Euclidean group, which are induced from R3@S0(2), and also for many Of 
representations of symmorphic space groups. 
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to the general case, if we wish to decompose a symmetrized tensor 
into irreducibles we may induce in stages, first up to N@M,, and then on. The 

will depend just on how the intermediate representation of NOM,  p.a"d 
decomposes into irreducibles (cf Mackey 1970). 

6 ~teere-pla 

'Ibere are, of course, many examples of groups with automorphisms which fit into the 
Fwd theory developed in 00 2 and 3 without looking even remotely like the tensor 
@"*treated subsequently. Unfortunately these usually turn out either to be devoid 
dphysi& interest or simpler to tackle directly. Nonetheless we shall mention a few to 
give ame idea of the scope of the theory. 

b e  interesting class of examples comes from taking for ll the inner automorphisms 
a P. Let us write rP for conjugation by the element p in P, that is 

[gbp=p-'gp. In order that the general theory apply we require that P should 
K and centralize H. It is also necessary that the representation D of K 

&,dd extend to a representation A of the subgroup generated by K and P. If P 
bappens to be contained in K then this is, of course, automatic. ll can be characterized 
&set of rP such that the commutator apa-lp-' lies in K, and ll(ct) is the set of 
&thatapHa-'p-' intersects K.  (If PE K then these reduce to the requirement that 
PPQ-' be in K and that apHa-'p-' intersect K respectively. ll, is thus the group of 
conjugations by elements of P, = P n K".) Specifying a representation of II amounts to 
theme thing as giving a representation of P which is trivial on elements of the 
centralizer of G in P. We shall therefore suppose that W is a representation of P. The 
consistencyrequirement is that, restricted to P,, A, should contain W. If this is satisfied, 
then to get the appropriate representation of H, we have to take a direct integral of 
induced representations running over one double coset in each ll orbit. 

Asanexample of this we take G to be the Poincare group R4@SL(2, 0, K the little 
PupR4@SU(2), H the Euclidean subgroup R3@SU(2), and P the subgroup of time 
translations in R4. There is no difficulty in showing that all our requirements are 
fnlfilled. Indeed since P E  K we may set A ( p )  equal to the character D(p) .  Being in a 
semi-direct product situation we may take our double coset representatives a to be in 
sL(2t c). Then spa-' lies on the Lorentz transformed time axis and is certainly in 
R4sK The consistency requirement is then that W(p) = D(apa-') for all time 
translations p .  This effectively fixes the energy, and there is only one double coset 
fepIesentative which is compatible with it. We therefore have no need of a direct 

to @e the representation of the Euclidean group H as there is only one 
contribution. Moreover, since ll" = l l (a)  = ll that one contribution is 

induced f h~  D on Hn K" = R3@SO(2). This is an irreducible representation. 
! specification of the energy of a relativistic elementary particle specifies 
qreducible Euclidean behaviour. (We have implicitly assumed here that the energy 

of complex matrix groups can be investigated by taking ll to be 
'*'?generated by complex conjugation. H then has to be a real subgroup and K 
OOe 'kh is self-conjugate. Two natural generalizations of this case suggest them- 
%? One look at matrix groups over a field extension having Galois group hl. 
MOTe?erestinglY one can study semi-simple Lie groups in which II is generated by a 

is above the rest mass of the particle otherwise no a will do.) 
Real 

involution. 
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AII example of this is provided by the Lorentz group SL(2, C), on wbcb 
involution A ++A*-' fixes SU(2). Let us suppose that we induce a representation from 
SU(2) and then restrict it back down to SU(2) again but taking only the pm 
behaves in a particular way under the Cartan involution. (This sort of situation rmght 
arise if we worked with the representations of the previous example but ratrimom 
attention from the Poinark to the Lorentz group.) We may easily check that the 
requirements for the application of the general theory are satisfied. (D can beextended 
trivially because SU(2) is unaffected by the involution.) The double mset reprenta- 
tives for su(2)\SL(2, C)/SU(2) can be taken to be real diagonal matrices with first 
entry greater than one. Any such a is equivalent to its a*-' by conjugation by an 
element of SU(2). Thus SU(2)a*-'SU(2) = SU(2)aSU(2) and the double coset is 
unchanged by the involution. On the one hand, this means that we are not able tocut 
down the number of double cosets required but on the other hand it also meallS that 
n(a) is always equal to lT, whilst lT, = II only if CY = 1, SO that we can always indue from 
a larger subgroup that would otherwise be the case. In fact, when one goes throu&k 
details, one discovers that the representation space for SU(2) instead of being ~2 

functions on the sphere is just those which have a specified behaviour under the 
antipodal map. 

Perhaps neither of these examples is particularly exciting in itself, but their- 
does suggest that there may well be useful applications of the general results besides 
that for which they were developed. 
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